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Correlation and dimensional effects of trions in carbon nanotubes
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We study the binding energies of singlet trions, i.e., charged excitons, in carbon nanotubes. The problem is
modeled, through the effective-mass model, as a three-particle complex on the surface of a cylinder, which we
investigate using both one- and two-dimensional expansions of the wave function. The effects of dimension-
ality and correlation are studied in detail. We find that the Hartree-Fock approximation significantly underes-
timates the trion binding energy. Combined with band structures calculated using a nonorthogonal nearest-
neighbor tight-binding model, the results from the cylinder model are used to compute physical binding
energies for a wide selection of carbon nanotubes. In addition, the dependence on dielectric screening is
examined. Our findings indicate that trions are detectable at room temperature in carbon nanotubes with radius

below 8 A.
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I. INTRODUCTION

Many applications of semiconducting carbon nanotubes
(CNTs) rely on the formation of junctions using either
doped' or asymmetrically gated CNTs.> Such junctions are
the basis for, e.g., CNT-based light-emitting diodes'** and
other optoelectronic devices. In the description of the optical
properties of CNTs, excitons are known to significantly
influence emission>® and absorption.” The importance of
excitons in CNTs is a consequence of the extremely large
binding energy of several hundred millielectron volt.>~’
Thus, in an optically excited junction with injected carriers,
an exciton in combination with either a hole or an electron
may form a three-particle complex known as a trion. It has
been shown experimentally that trions form in biased GaAs
quantum wells® under optical excitation via the interaction
between excitons and injected electrons and holes.
Consequently, similar processes are expected to occur in
CNTs. Hence, if the binding energy is sufficiently large,
these complexes are expected to be of importance for
optoelectronic devices and could even be detectable at room
temperature.

In traditional semiconductors, trion binding energies and
optical spectra have been studied in one,”!% two,''~!3 and
three dimensions.!> In contrast, trions in CNTs have only
been studied in an effectively one-dimensional (1D)
model'® in which carriers were assumed to be completely
delocalized around the circumference of the tube. Within
this model, it was found that singlet and triplet trions in
CNTs are stable against dissociation into excitons and
free carriers. Furthermore, the difference in energy
between the positive S* and negative S~ singlet trion states
was rather small for mass fractions o=m,/m, e[0.8;1],
where m, is the effective electron mass and m; is the
effective hole mass. Also, numerical trion binding energies
were estimated for CNTs with radius from 2.5 to 10 A. It is
clear, however, that a one-dimensional model may have
limited applicability for large diameter CNTs in which mo-
tion around the circumference is an important degree of
freedom.
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The one-dimensional model used in Ref. 16 has many
potential applications as it greatly simplifies the complexity
of the calculations for trions, biexcitons, charged biexcitons,
etc. However, it still remains to assess the quality of this
approximation and, therefore, it is important to compare one-
and two-dimensional (2D) solutions for trions. It is clear that
the effective-mass model used in Ref. 16 is an approximation
to more accurate ab initio approaches. However, comparison
with ab initio results for the exciton energy and its scaling
with tube radius!” as well as the exciton wave function'
demonstrates excellent agreement between these different
approaches.!”!3 In this paper, we investigate two simplifica-
tions of the full effective-mass trion problem. First, the one-
dimensional model is examined by comparison to two-
dimensional solutions of the full problem. Second, the
accuracy of the Hartree-Fock approximation for trion bind-
ing energies is determined in both one- and two-dimensional
models. As our starting point for both models, we expand the
wave function in a convenient basis. The same basis expan-
sion is applied in the Hartree-Fock calculation, which is
briefly outlined. Next, we investigate the binding energies of
trions, in both the one- and two-dimensional models, as func-
tions of cylinder radius r and mass fraction o. We compare
the Hartree-Fock solutions with the full solutions (at =0.0),
and we analyze the distribution of electrons along the cir-
cumference in a negative trion state S~ for the two methods.
Finally, the CNT band structure is used to convert model
results into physical binding energies for a wide range of
CNTs, using both the one- and two-dimensional models.

II. THEORY
Adopting the fundamental trion equation from Ref. 15
and introducing relative cylindrical coordinates along with
removal of center-of-mass motion, we get the Hamiltonian

for the negative trion,
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FIG. 1. Geometry of a negative trion on the surface of a cylinder
of radius r, described in relative coordinates. The filled circles il-
lustrate electrons and the open circle illustrates a hole.
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where r is the nanotube radius and x; and r6; denote axial and
circumference coordinates, respectively, as shown in Fig. 1.
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The exciton operators, ﬁl and ﬁz, are given by

A
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and the Coulomb potential in the cylinder geometry is given
19
as

V(x,0) = ; (3)
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Here, the coordinate pairs (x;,6,) and (x,, #,) describe the
motion of the first and second electron relative to the hole,

respectively. The positive trion Hamiltonian I:I is found by

the replacement o— o~!. Note that H_ and H have incor-
rectly been interchanged in Ref. 16. The Hamiltonian is ex-
pressed in natural exciton units, i.e., effective Bohr radii az
and effective Rydbergs Ry* for distances and energies, re-
spectively.

If the radius r is much smaller than the effective Bohr
radius az, the electrons are highly delocalized around the
circumference and the angular dependence of the wave func-

S(T)
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tion for the lowest states will be nearly constant. In contrast,
when r is comparable to aj, the angular dependence is ex-
pected to have a cusplike behavior similar to the one found
for excitons.!® A function that suitably describes this behav-
ior is the absolute value of sine |sin2|. Thus, it would be
reasonable to model the angular part of the wave function as
a linear combination of the two limits. Moreover, to model

the electron-electron repulsion for H_ and hole-hole repul-

. A . . 0= . .
sion for H,, the function |sm(f)| constitutes a sensible
choice as it attains its minimum along the diagonal 6,=6,.
Having this in mind, we expand the wave function according
to

Ny.Ny,Ny 4

E 2 Cljkl¢1(xl)¢](x2)

i,j.k
X p(x) = x2) @( 6y, 65) (4)

. . 2 . L
with Gaussians ¢;(x)=e™*" along the translational direction
and an angular basis {d),}?: , along the circumference, where

hxy,01,x5,6,) =

y
1 =1,
sin—l‘ 1=2,
2
(61,6 = ——¢ (5)
PROLT) =5 sin—2’ I=3,
2
0,— 0
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Here, i, j, and k run from 1 to N, N,, and N3, respectively,
and N=N;-N,-Nj is the total number of Gaussians used in
the expansion. The expansion coefficients c;;, are obtained
from the eigenvector ¢ of a matrix equation of the form
(K+ ﬁ)'5=ET§ -¢. We define the trion binding energy
Ep=Ey—E7 as the difference between the exciton binding
energy Ey and the trion energy E;, where a positive Ep in-

dicates a stable trion. The kinetic matrix K and overlap ma-

trix S elements turn out as S ;7 jrxryr = Sljkl,],k,SglC, and
0, 20 _cm
Kljk]lj’k’l,_Sl]kl’]’k’(Kgl' l+o Kgl'
g™ gD 20 (O
ijk,i'j'k’ Jik,j'i'k' l+o ijk,i"j k" )
(6)
with
o

ijk,i’j'k’ =

\/(Oli +ay)(a;+ aj) (o + ayr) ’

2alap (@ + aj + a;+ ) + apalap + )|+ 27 + aj) (g a; + ap oy + agayr)

K

ijk,i"j'k" =

[(OZJ + ()lj/)((l’i +a;+ o+ OZkr) + (ai + ai’)(ak + ak’)]3/2

i
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where J;; is the Kronecker delta and with the angular overlap
integrals S;lc,) given in Table I. In the derivation, care should
be taken as the second derivative of the absolute value of a
sine gives a delta function, which takes many of the kinetic-
energy elements to zero. The potential-energy matrix ele-
ments turn out to be slightly more complicated and can be
expressed in terms of four different Meijer G functions.

In order to formulate the problem in terms of the Hartree-
Fock approximation we now assume that the eigenfunction
of the operator Eq. (1) is a Slater determinant of single-
electron states x(x,6) with antisymmetry in the spin part.
From standard quantum mechanics,2’ we then obtain the
Fock operator for the corresponding system,

F o1& 2

[
x> o

+ Vylx,0), (7)

X2+ 417 sin?—

where the Hartree potential Vy is given by

VH(x,0)=2f dx'f de’
- o \/(x—x

X&', 6"

,0-0'

)2 +4r% sin
(8)

From the eigenvalue equation F x(x,0)=ex(x,0), the
Hartree-Fock eigenvalues are found and the lowest one g is
related to the trion ground-state energy in the usual way,

EHD =26, - J dxf ablx(x, O Vy(x.0).  (9)

Expanding x(x,6) in a basis of Gaussians along the
translational direction and absolute value of sines along the
circumference, as done for the full problem, we are capable
of solving the Hartree-Fock eigenvalue equation self-
consistently.

TABLE 1. Table of angular overlap integrals.

s\ 1 2 3 4
2 2 2

: : T H i
2 ; 2 p w
3 2 i 1 3
T w2 2 w2

4 2 i i 1
T 2 2 2

[(ai + air)(aj+ a;r + o+ akr) + (a, + ajr)(a’k+ a’kr)

]3/2 ’

III. RESULTS AND DISCUSSION

Optimization of the Gaussian coefficients was carried out
using a steepest-descent method. The following coefficients,
in units of aj; %, were found for the different optimizations:
a; €{0.143,1.16,4.98,29.0,250} for both the 1D and 2D ex-
citon and a;,a;,ay € {0.0651,0.145,1.68,9.65,48.7} for the
1D trion. For the 2D trion, the Gaussian coefficients were
found to be a;,a; € {0.165,1.68,9.65,48.7} for the functions
e and =", and a, €{0.0000171,1.68,9.98,48.7} for
the functions e~ Similarly, the coefficients for the
Hartree-Fock calculations were found to be a;, a;
€{0.0648,0.195,1.04,5.28,27.5,99.3,250} for both the 1D
and 2D cases. All optimizations were carried out at
ro=0.lay and all coefficients were subsequently scaled with
ry/ r? for calculations involving other radii.

The binding energies Eg of trions were found as functions
of radius for both the one- and two-dimensional models. In
Fig. 2, it is seen that the one- and two-dimensional results
deviate less as r approaches zero, as expected. It is important
to realize that the effective Bohr radius aj is dependent on
nanotube species via the effective masses and dielectric con-
stant &. Due to the scaling of masses with nanotube radius, it
turns out that r is, in fact, roughly proportional to aj. For
CNTs embedded in a medium with £=3.5 it is found that'’

1.8
1.6 K

14

o

=,

w2 12

>

20

S 10

()

z

£ 08

= :

= 06
0.4

0.05 0.10 0.15 0.20 0.25 0.30

Nanotube radius » [a;]

FIG. 2. (Color online) Comparison between the one- and two-

dimensional models. For each of the two models, three cases are

shown, namely, S . STS , and S ¢. The positive and negative trion

binding energies were calculated for 0=0.80. The ST'/O_ binding en-
ergies were calculated for o=1.0.
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FIG. 3. (Color online) Trion binding energy as a function of the
mass fraction o=m,/m,, for the one- and two-dimensional models.
The calculations were done for r=0.la;.

r=0.lay, and for this value, the correction is roughly 13% of
the two-dimensional result. The one-dimensional model per-
forms significantly worse when the radius is increased. For
r=0.3ay, the one-dimensional result is 42% below the two-
dimensional one and, as would be expected, the one-
dimensional model can only be considered a good approxi-
mation for r close to zero. Realistically, though, r>0.2a2
will only occur for CNTs embedded in media with small
screening & < 1.75.

From Egq. (1) it follows that the mass fraction o affects the
binding energy via a mixed kinetic-energy term coupling the
two relative coordinates (x;, #;) and (x,, 6,). The mass frac-
tion o of CNTs varies between 0.86 and 1.0 (Ref. 16) and to
gain an idea of the upper and lower bounds of the trion
binding energies, we have plotted the positive and negative
trions at 0=0.8 in Fig. 2. Actual binding energies should lie
between the Sj ¢ and S} energy curves and the S}y and Sj
curves for the negative and positive trion, respectively. It is
seen that the difference is fairly small for both the one- and
two-dimensional models. In Fig. 3, we illustrate the binding
energies as functions of the mass fraction o for both models
for r=0.1ay. In both cases, the binding energy for the nega-
tive trion S~ was found to have little variation for o
€[0;1]. As a consequence, the results calculated for So0 are,
in fact, excellent approximations for both S? and S, with
mass fractions in the range o €[0.8;1]. It follows that ne-
glecting the mixed kinetic-energy term is an acceptable ap-
proximation, which in the worst case would give an error of
3.2% at r=0.1ay.

Next we calculated the binding energies using the
Hartree-Fock approximation. As demonstrated above, the
mixed kinetic-energy term is only a minor correction for ac-
tual nanotubes. Thus, in the following, we ignore this term
and limit the discussion to S, states. In Fig. 4, the Hartree-
Fock energies are plotted along with the S, trion energies
for both one- and two-dimensional solutions. The Hartree-
Fock solutions significantly underestimate trion binding en-
ergies is both cases. Differences up to a factor of 2, in the
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FIG. 4. (Color online) Solutions for the one- and two-
dimensional models compared with the corresponding Hartree-Fock
solutions. The calculations were carried out at =0.0.

two-dimensional case, were found. The best Hartree-Fock
result obtained in the interval r €[0;0.3] was at the end
point r=0.3ay where the Hartree-Fock energy is 60% of the
correct result. The trion problem of two electrons interacting
with a positive hole is mathematically similar to the He
atom. Hence, the dramatic failure of the Hartree-Fock ap-
proximation is surprising at first sight. However, the failure
is readily ascribed to several characteristic factors in the trion
case. Primarily, we focus here on the binding energy
Ep=Ex—E; given as the difference between exciton and
trion energies. Hence, relatively small errors in the Hartree-
Fock trion energies EYP) lead to large errors in the binding
energies provided E(T F )—ET is comparable to Ex—E. Sec-
ond, Fig. 4 shows that the error increases as we decrease the
radius, i.e., when the effective dimension of the system de-
creases from two toward unity. Actual CNTs can be regarded
as effectively 1.7-dimensional systems.?! The approximate
treatment of electron-electron repulsion in the Hartree-Fock
calculation is more serious in a low-dimensional geometry
due to the increased overlap between electrons enforced by
the geometry. Hence, the Hartree-Fock error for the (three-
dimensional) He atom is small even if the energy is mea-
sured relative to the hydrogen atom. Finally, in the present
problem, the strengths (charges) of the electron-hole and
electron-electron are identical. In He, the larger nuclear
charge Z=2 enhances the electron-nucleus interaction. As a
result, the contribution to the energy from the electron-
electron repulsion is relatively smaller and, thus, the Hartree-
Fock approximation is less inaccurate.

To investigate the behavior of the wave function around
the circumference, the probability distribution, averaged over
the translational coordinates x; and x,, as a function of
angles,

PT(01’02)=f f dx,dxy|)l(xy, 0),%,, 6,)|?
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FIG. 5. (Color online) Probability distributions as functions of
angles for (a) r=0.05ap, (b) r=0.10ay, and (c) r=0.25a for the
singlet trion S;’/(} calculated with a basis expansion. The exciton
probability distributions have been shown in (d) for the radius vary-
ing from r=0.05ay to r=0.25ay. In (e), the Hartree-Fock probabil-
ity distribution is shown at r=0.1a; and (f) shows percentwise dif-
ference between the Hartree-Fock solution and the solution

obtained from the full problem at r=0.1aj

4 4 4
(T)
=22 X SiikirjriCigpaCir i @101, 02) @101, 62),
l,l, i’j’k i/,j’,k,

has been shown in the left column of Figs. 5(a)-5(c) for
r=0.05ap, r=0.10ay, and r=0.25a,. The probability distri-
bution gives the probability P(6;,6,)d6,d6, of finding the
electrons with angles between 6; and 6,+d6,, and, 6, and
6,+d6, from the hole, respectively. It is normalized such that
integration over both angles from — to 7 yields 1. It is seen
that the probability distribution tends to be more delocalized
as r tends to zero. This is also what we would expect since a
purely one-dimensional system has no angular dependence.
Further it is noticed that the distribution has a butterfly shape
as is seen in other cases.!®?? In Fig. 5(d), we have plotted the
exciton probability distribution as a function of the angle for
r between 0.05ay and r=0.25ay. The exciton probability dis-
tribution is given by
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where ¢¥(6)=1/ \V27r and (p(zx)(ﬂ)=|sin§|/ \27r. This plot
confirms the contracting behavior of the trion probability dis-
tribution seen in Figs. 5(a)-5(c). In Fig. 5(e), the Hartree-
Fock probability distribution has been plotted for r=0.10aj.
Clearly, the effects of approximating the electron-electron
repulsion are largest along the diagonal #,=6,. This is em-
phasized in the difference plot Fig. 5(f), where the difference
between the Hartree-Fock distribution and the full distribu-
tion has been plotted in percent. The errors in the Hartree-
Fock distribution vary from —2% up to 4%. The delocaliza-
tion of the trion wave function is enhanced by the nearly
equal electron and hole masses. Hence, the center of mass
will not coincide with the position of any of the constituents
but, rather, lie somewhere in between. This is another notable
difference between trions and He atoms, for which the center
of mass will practically fall on top of the nucleus. As a con-
sequence, both electrons and holes are almost completely
delocalized around the circumference in the realistic trion
case 0=~ 1.0 and r=0.lay, as illustrated in Fig. 5(b).
Whether trions in CNTs will be detectable at room tem-
perature is determined by the magnitude of the trion binding
energy Ep relative to the thermal energy kz7T. The trion bind-
ing energy depends on the static dielectric constant £ as well
as the reduced electron-hole pair mass u, through the effec-
tive Rydberg Ry*=13.6 eV u/e” and the effective Bohr ra-
dius a3=0.529 A &/u.'®!” The reduced mass u is obtained
from the CNT band structure, and in order to determine the
hole and electron masses in CNTs, for a particular chiral
index (n,m), we used a nonorthogonal nearest-neighbor
tight-binding model. The transfer integral was chosen as?
t=-2.89 eV and the overlap as s=0.1. The soundness of
these parameters follows from the fact that the predicted
Fermi velocity of graphene v;=9.6X10° m/s is within
5.7% of the average experimental value.>* Since the CNT
band structures are derived from the graphene band structure
this indicates that effective hole and electron masses will be
estimated with a similar error. Using this tight-binding
model, the reduced mass was found as p=1/(m,'+m;"). The
dielectric constant & on the other hand, is determined partly
by the CNTs and partly by their surroundings. It has been
shown in several articles>>-?’ that the contribution from the
surroundings plays a significant role in the determination of
optical transition energy in CNTs. Further, the electrostatic
potential ¢, in an quasi-one-dimensional nanostructure con-
fined along y and z, will be governed by the perpendicular
component &, since® ¢ (e x +e8y +e,.8,20) 7"
~ g '[x|~" if the tube radius is small. It has been shown that
€, is small for a wide range of nanotubes in Ref. 29, and
therefore the surrounding material is expected to dominate
the static dielectric constant €. Moreover, the results ex-
pressed in effective units are universal results and do not
depend on &. The dependence arises only through the con-
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FIG. 6. (Color online) Binding energy of negative trions in (6,5)
CNTs as a function of dielectric constant &.

version into physical units (eV and A) via the effective Ry-
dberg Ry* and Bohr radius aj, similarly to the exciton!® and
biexciton.?® Since the dielectric constant depends on the ma-
terial in which the CNTs are embedded, az and Ry" should
be determined for the individual experiment. Therefore, &
can be regarded as an experimental parameter varying from
sample to sample. Well-established methods for synthesizing
samples with high concentrations of (6,5) CNTs exist’"3? and
we will therefore use (6,5) as an example in the following.
CNTs having chiral index (6,5) have in some cases been
suspended in sodium cholate®” and, in other cases, embedded
in a polymeric matrix.’! The dielectric constant & should be
chosen according to either of these materials. However, no
exact values of & were found for the above suspension ma-
terials. It has been shown that the photonic transition energy
as a function of environmental dielectric constant saturates
near?® g0 ~5 (. Expecting that the surrounding material
will have a dielectric constant somewhat above the dielectric
constant of air, e=3.5 is considered as a reasonable average.
The radius for (6,5) CNTs is r=3.73 A and the effective
masses of electron and hole turn out to be m,=0.0803 and
m;,=0.0866, respectively, which leads to a reduced mass
m=0.0417. The effective Rydberg and Bohr radius are found
to be Ry*=0.0462 eV and az=44.5 A, respectively. With
these values, the effective radius is r=0.084ay,, and using
this, the negative trion binding energy can be calculated to
Ep=1.28Ry*~59 meV. Hence, for these species, Ej is
larger than kzT=26 meV and the trion state for (6,5) CNTs
is expected to be detectable at room temperature.

In the hope that these results will stimulate measurements
of the trion binding, we have calculated the energies at
& €[2.0;5.0], which corresponds to finding the binding en-
ergy for (6,5) CNTs suspended in a large variety of solutions.
We found that the binding energy, in this range for &, will be
at least E5=36 meV and atmost Ez=132 meV. The result
has been shown in Fig. 6 in a double-logarithmic plot and we
also include a curve fit given by
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FIG. 7. (Color online) Binding energy of trions in CNTs in
physical units using effective electron and hole masses derived from
a nonorthogonal tight-binding scheme. The shaded area illustrates
the instability region for which Ep<<kpT. Inset: percentwise differ-
ence between the one- and two-dimensional models.

Ep(e) = (0.372¢71° + 0.00608) meV. (10)

The result is not surprising as it simply emphasizes the im-
portance of choice of suspension material with respect to
measuring the binding energy of trions. As a consequence,
experiments should be conducted with suspension materials
with low dielectric constants. Also, the power dependence is
what would be expected as a similar result was found for the
exciton,'? where it was shown that Ex(r) & *°Ry*, with r in
units of ay. Using the effective Rydberg and Bohr radius it is
easily shown that the exciton energy for CNTs follows a
similar power law Ey(g) g4,

Keeping £=3.5 constant, we found the positive and nega-
tive trion binding energies for all semiconducting CNTs with
3=r=15 A. The results are seen in Fig. 7. The binding
energies were found using both the one- and two-
dimensional models. As seen in the inset, the two-
dimensional model has improved the energy, compared with
the one-dimensional one, with up to 15%, and on average
11%. It is noticed that in order to observe trions in CNTs at
room temperature, the radius of the CNTs must be below
approximately 8 A. Since the binding energy increases with
decreasing radius, CNTs with low radius constitute better
candidates for observing trions. Hence, CNTs with chiral in-
dex (6,5) are very promising candidates for measuring trion
binding energies.

IV. CONCLUSION

In this work, trions in CNTs have been modeled as three-
particle complexes bound to the surface of a cylinder. We
have shown that the angular behavior plays a significant role
with a contribution of 13% to the binding energy for cylin-
ders with radius r=0.10aj. It is concluded that the energy for
the S, trion constitutes a fairly good approximation to both
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positive and negative singlet trions with mass fraction above
0.80. We have demonstrated that the Hartree-Fock method
applied to the S, trion equation yields results that at best,
are 60% of the correct result. We conclude that the binding
energies of trions in CNTs are lowered with 11% on average

PHYSICAL REVIEW B 81, 205446 (2010)

by including the angular part of the wave function for trions.
Finally, trions are expected to be detectable in doped CNTs
with <8 A and we consider CNTs with chiral index (6,5)
as a very good candidate for measuring trion binding ener-
gies.
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